

9th Oct, 2024

1. PSLV- C37 upper stage re-enters Earth orbit

GS 3 (Science and Tech)

- **Why in News:** ISRO announced the successful re-entry of the Polar Satellite Launch Vehicle-C37 (PSLV-C37) upper stage into Earth's atmosphere on October 6. This achievement aligns with global efforts to reduce space debris, supporting ISRO's goal of achieving debris-free space missions by 2030.

• Space Debris

○ About

- Space debris refers to defunct, human-made objects in Earth's orbit, such as non-functional satellites, spent rocket stages, and fragments from satellite collisions.
- These debris pose a growing threat to operational spacecraft, satellites, and the International Space Station (ISS).

○ Challenges

- **Collisions:** Even tiny debris can cause severe damage to satellites and space stations due to their high velocities.
- **Chain Reaction (Kessler Syndrome):** Increasing debris can lead to more collisions, creating even more debris and increasing the risk of cascading damage.
- **Cost of Mitigation:** Tracking and removing debris require advanced technology and substantial financial investment.

○ Increasing space debris

- With the rise in the number of satellites in orbit around the earth, space debris has become a pressing issue.
- According to ISRO's Space Situational Assessment report 2022, the world placed 2,533 objects in space in 179 launches in 2022.
- The number of space objects greater than 10 cm in size in LEO is expected to be about 60,000 by 2030.

○ Legal provisions

- Currently, there are no international space laws pertaining to LEO debris.
- However, most space-exploring nations abide by the **Space Debris Mitigation Guidelines 2002** specified by the IADC. This was endorsed by the U.N. in 2007.
- The guidelines outline methods to limit accidental collisions in orbit, break-ups during operations, intentional destruction, and post-mission break-ups.

○ International Institutions

- **Inter-Agency Space Debris Coordination Committee (IADC):** A global forum that coordinates efforts to mitigate space debris.
- **United Nations Committee on the Peaceful Uses of Outer Space (COPUOS):** Sets space debris mitigation guidelines.
- **International Telecommunication Union (ITU):** Regulates satellite orbital slots to prevent overcrowding.

○ Steps taken by India

- **Debris Free Space Mission (DFSM):** ISRO is committed to achieving a debris-free space environment by 2030 through passivation, active de-orbiting, and controlled re-entry of spent rocket stages.
 - The implementation of this DFSM initiative will start by the beginning of 2025.

Upper stage of rocket returns to earth after 7 years: ISRO

The Hindu Bureau
BENGALURU

The Indian Space Research Organisation (ISRO) on Tuesday said that the upper stage of the Polar Satellite Launch Vehicle C-37 (PSLV C-37 mission) re-entered the earth's atmosphere on October 6.

The PSLV-C37 mission was launched from Sriharikota on February 15, 2017, with Cartosat-2D as the main payload, and another 103 satellites as co-passengers.

The space agency created history as it was the first mission to launch 104 satellites with a single vehicle.

FULL REPORT ON
» PAGE 5

- This includes selecting clean orbits, budgeting fuel for post-mission disposal, and precisely controlling re-entry trajectories.
- **ISRO's Debris Mitigation Strategy:** India's space agency, ISRO, follows international guidelines, including the IADC's recommendation to limit post-mission orbital life to 25 years.
- **IS4OM (ISRO System for Safe and Sustainable Space Operations Management):** Monitors space debris and orbital decay, ensuring compliance with mitigation guidelines.
- **PSLV- C37 upper stage re-enters Earth orbit**
 - **Re-entry of PSLV- C37 upper stage**
 - On October 6, 2024, the upper stage of ISRO's PSLV-C37 mission, launched in February 2017, re-entered Earth's atmosphere.
 - The PSLV-C37 carried 104 satellites, including Cartosat-2D as the primary payload.
 - After the mission, the upper stage (PS4) remained in orbit at approximately 470x494 km.
 - Over time, its orbit decayed due to atmospheric drag and was closely monitored by ISRO and US Space Command (USSPACECOM).
 - **Re-entry followed international debris mitigation guidelines**
 - This re-entry followed international debris mitigation guidelines, specifically the IADC recommendation to limit the post-mission orbital life to 25 years.
 - ISRO's passivation sequence successfully lowered PS4's orbit, **ensuring re-entry within eight years.**
 - ISRO is now working to further reduce the orbital lifetime of rocket stages to five years through active de-orbiting, with future missions focusing on controlled re-entry.
 - ISRO also aims to achieve a Debris Free Space Mission (DFSM) by 2030.

2. Nobel Prize in Physics Honors Pioneering Advances in AI and Machine Learning GS 3 (Science and Tech)

- **Why in News:**
 - The 2024 Nobel Prize in Physics was awarded to **John Hopfield** and **Geoffrey Hinton** for their foundational contributions to AI, particularly in machine learning and artificial neural networks.
 - Their ground-breaking research in the 1980s laid the foundation for the AI revolution unfolding today
- **Machine learning (ML)**
 - **About**
 - ML is a subset of artificial intelligence (AI) that enables computers to learn from and make decisions based on data without being explicitly programmed for each task.
 - In machine learning, algorithms identify patterns in large datasets and use these patterns to make predictions or perform specific tasks.
 - The key idea is that systems improve their performance over time through experience, by training on data.
 - **Applications of Machine Learning:**
 - Image and speech recognition
 - Recommendation systems (like those used by streaming services)
 - Fraud detection
 - Healthcare diagnostics
 - Autonomous vehicles

Hopfield and Hinton, machine learning pioneers, win Nobel Prize in Physics

VASUDEVAN MUKUNTH
CHENNAI

Professor John Hopfield (left) and Professor Geoffrey Hinton. AP

The 2024 Nobel Prize in Physics has been awarded to John Hopfield and Geoffrey Hinton "for foundational discoveries and inventions that enable machine learning with artificial neural networks", the Royal Swedish Academy of Sciences announced on Tuesday.

While many areas of research have used machine learning models and artificial neural networks (ANNs) to process data, these teams have entered the household, thanks to the explosion of chat AI apps, including ChatGPT.

The work of this year's

laureates concerns the theoretical foundations of machines that can learn without humans teaching them and can use their knowledge to answer questions.

ANNs are collections of neurons, or more broadly, nodes capable of processing data, connected in specific ways. A connection between two neurons

allows information to flow between them. In a recurrent neural network, information can flow both ways.

Professor Hopfield of Princeton University in the U.S. is credited with developing the Hopfield network, a type of recurrent neural network. Its neurons learn and process information based on Hebb's

CONTINUED ON
» PAGE 12
DEEP ROOTS
» PAGE 6

- **Deep Learning (DL)**
 - **About**
 - Deep Learning is a specialized subset of machine learning that focuses on using artificial neural networks with multiple layers (hence "deep").
 - It mimics the structure and function of the human brain to recognize complex patterns in large datasets, such as images, text, or sound.
 - Deep learning has been pivotal in advancing AI technologies, particularly in areas like image recognition, natural language processing, and self-driving cars.
 - **Key Applications of Deep Learning:**
 - **Image and speech recognition** (e.g., face detection, virtual assistants)
 - **Autonomous vehicles** (e.g., self-driving cars)
 - **Natural language processing** (e.g., language translation)
 - **Medical diagnostics** (e.g., cancer detection in medical imaging)
 - **ML Vs. DL**
 - While **machine learning** involves training algorithms with structured data and often requires human input for feature extraction, **deep learning** automates feature discovery using multi-layered neural networks, making it more powerful for complex tasks, especially when large datasets are available.
- **Artificial Neural Network (ANN)**
 - **About**
 - ANN is a mathematical model that uses a network of interconnected nodes to mimic the human brain's neurons and process data.
 - ANNs are a type of machine learning (ML) and deep learning that can learn from mistakes and improve over time.
 - They are used in artificial intelligence (AI) to solve complex problems, such as recognizing faces or summarizing documents.
 - **Key features of ANNs**
 - **Structure**
 - ANNs are made up of layers of nodes, each containing an activation function. The nodes are interconnected, with each node in a layer connected to many nodes in the previous and next layers.
 - **Learning**
 - ANNs are adaptive and learn from their mistakes using a backpropagation algorithm.
 - They modify themselves as they learn, with inputs that contribute to the right answers weighted higher.
 - **Output**
 - The output of the ANN is produced by the final layer of nodes. The output is usually a numerical prediction about the information the ANN received.
 - **Applications of Artificial Neural Networks:**
 - Image and video recognition (e.g., facial recognition systems)
 - Speech recognition (e.g., virtual assistants like Siri and Alexa)
 - Natural language processing (e.g., language translation)
 - Medical diagnostics (e.g., detecting diseases from medical images)
 - Autonomous vehicles (e.g., self-driving car navigation)
 - In essence, artificial neural networks mimic the brain's ability to learn from experience, adapt, and recognize complex patterns, making them foundational to modern AI and machine learning systems.
- **Works of Noble Prize winners**
 - **Hopfield's contribution - Mimicking the Brain with Neural Networks**
 - Hopfield's major breakthrough was creating artificial neural networks that mimic human brain functions like remembering and learning.
 - Hopfield's network processes information using the entire structure rather than individual bits, unlike traditional computing.

- It captures patterns holistically, such as an image or song, and recalls or regenerates them even from incomplete inputs.
 - This breakthrough advanced pattern recognition in computers, paving the way for technologies like facial recognition and image enhancement.
 - His research was inspired by earlier discoveries in neuroscience, notably Donald Hebb's work on learning and synapses in 1949.
 - **Hinton's Contribution - Deep Learning and Advanced Neural Networks**
 - Hinton advanced Hopfield's work by developing deep neural networks capable of complex tasks like voice and image recognition.
 - His method of backpropagation enabled these networks to learn and improve over time through training with large datasets.
 - Backpropagation, short for "backward propagation of errors," is an algorithm for supervised learning of artificial neural networks using gradient descent.
 - His contributions led to major advancements in AI technologies, including modern applications such as speech recognition, self-driving cars, and virtual assistants.
 - Hinton's deep learning networks made a significant impact at the 2012 ImageNet Visual Recognition Challenge, where his team's algorithm dramatically improved image recognition technology.
 - His work demonstrated the vast potential of AI in various fields, including astronomy, where machine learning helps researchers analyze vast amounts of data.
 - **Conclusion**
 - Both Hopfield and Hinton have made pioneering contributions to the development of AI, with Hopfield bridging neuroscience, physics, and biology, and Hinton revolutionizing computer science.
 - Their work has shaped modern AI technologies, making them deserving recipients of the Nobel Prize in Physics.
- 3. Halari donkey**
GS 3 (Environment)
- **Why in News:** The endangered Halari donkeys, native to the Halar region of Gujarat, are considered to be intelligent animals which work closely with human beings.
 - **About Halari donkey:**
 - It is native to the **Halar region of Gujarat** especially found in the semi-arid landscape of **Jamnagar and Dwarka**
 - **Appearance:** It is white in colour, and is larger and **more resilient** than other donkey breeds.
 - They are social animals and form close bonds with people, supporting them for transport needs.
 - **Uses**
 - The **Bharwad and Rabari pastoralists** are the main communities which use this donkey as a pack animal to carry luggage during migration with small ruminants.
 - The **Kumbhar** (potter) community also uses this animal for pottery work in Dwarka in the Jamnagar region.
 - Halari donkey milk is known for its sweetness. Milk powder made from it can fetch upwards of ₹7,000 a kg in the international market and is **used for cosmetic purposes**.
 - **Conservation status:** It is considered endangered; the surviving population of the Halari donkey numbers fewer than 500.

- **International Commitments and Final Phase-out**
 - This long transition away from coal was further reinforced by Britain's commitment under international agreements like the 2015 Paris Agreement.
 - The decision to phase out unabated coal power by 2025 was a continuation of a decades-long trajectory, rather than an abrupt change in policy.
 - By the time of this commitment, the U.K. had already reduced its coal use to about one-fifth of its energy needs, paving the way for a relatively smooth final phase-out.
 - This included significant investments in renewable energy infrastructure, such as offshore wind farms, which allowed the U.K. to maintain energy security while reducing carbon emissions.
- **India's Distinct Path, A Comparative Analysis and Lessons from Britain**
 - **India's Distinct Path of Transition**
 - Contrasting Britain's historical transition, India is currently navigating its own complex path toward achieving net-zero emissions by 2070, with a plan to derive half of its energy needs from renewables by 2050.
 - As of 2023, India is the third-largest carbon emitter globally, with emissions of about 2.9 gigatons, substantially higher than the U.K.'s 384 million metric tons.
 - However, India's population is over 20 times that of the U.K., resulting in per capita emissions of just 2 tons—far below the global average of 4.6 tons and less than half of Britain's 5.5 tons.
 - This stark difference in per capita emissions underscores the need for tailored energy policies that address the specific developmental needs and socio-economic conditions of each country.
 - **A Comparative Analysis**
 - Today, coal remains central to India's energy production, accounting for 70% of its energy output.
 - Despite efforts to expand renewable energy capacity, the country has not yet reached its peak coal production and consumption, which is projected to occur between 2030 and 2035.
 - This timeline differs significantly from Britain's peak in the 1950s and 1960s, highlighting the different stages of economic and energy development between the two nations.
 - Moreover, India's coal sector provides employment to over a million people, many of whom transitioned from agriculture to mining, making it essential to plan carefully for any future phase-out.
 - **Lessons from Britain's Transition**
 - Although Britain and India's energy journeys differ, India can draw important lessons from Britain's approach, especially in the past decade.
 - After committing to phasing out coal, Britain implemented a multifaceted strategy to address the impact on coal-dependent workers and communities.
 - This included retraining programs aimed at industries requiring similar skill sets, early retirement packages, and the creation of new education and apprenticeship opportunities.
 - Regional redevelopment efforts helped repurpose coal-reliant infrastructure, such as converting old coal plants to biomass energy production and establishing renewable energy projects in former mining regions.
- **India's Path Forward to Sustainable Energy Future**
 - **A Customised Transition Strategy**
 - India's road to a sustainable energy future is already underway, marked by impressive growth in renewable energy capacity.
 - However, it must navigate its transition with careful planning to avoid repeating Britain's missteps.
 - A holistic strategy, featuring clear timelines for decommissioning coal plants and programs for regional redevelopment, is essential.
 - This approach should include training programs for miners and other workers, support for industries that can absorb the transitioning workforce, and incentives for investment in renewable energy projects in historically coal-dependent regions.

- **Prioritise Social Equity**
 - Given that many coal-producing areas in India are among the poorest in the country, **the shift must prioritise social equity**.
 - **A transition that leaves these communities behind risks deepening economic disparities**
 - **By planning for a just transition**, one that is inclusive and respects the social fabric of its coal-reliant regions, **India can ensure that economic growth and environmental sustainability go hand in hand**.
 - **While India's timeline to reach net-zero emissions is longer than Britain's, this extended period provides the opportunity to design an energy transition that is both effective and equitable.**
- **Conclusion**
 - The **shutting of Britain's last coal-fired power plant symbolises a global shift toward renewable energy**, yet it also serves as a reminder of the complex challenges involved in reducing dependence on coal.
 - **India's trajectory, marked by its unique social, economic, and energy needs, necessitates a tailored approach** that considers its ongoing dependence on coal, the economic realities of coal-dependent communities, and the growth potential of renewable energy.
 - **Learning from Britain's successes and mistakes, India can chart a path that balances the urgent need for climate action with the developmental needs of its population**, ensuring a transition that is both inclusive and sustainable.

5. Trachoma

GS 2 (Health)

- **Why in News:** Recently, the World Health Organisation (WHO) has declared that the Government of India has eliminated Trachoma as a public health problem becoming the third country in the South-East Asia Region to achieve this milestone.
- **About Trachoma:**
 - It is a **bacterial infection** that affects the eyes.
 - It is caused by the bacterium **Chlamydia Trachomatis**.
 - **How it spreads?**
 - It is **contagious**; spreading through contact with the eyes, eyelids, nose or throat secretions of infected people, if left untreated it **causes irreversible blindness**.
 - It is found in communities that are living in **poor environmental conditions**.
 - WHO has termed Trachoma as a **neglected tropical disease** and its estimation suggests that 150 million people worldwide are affected by Trachoma and 6 million of them are blind or at risk of visually disabling complications.
 - **Initiatives of Government of India**
 - The Government of India launched the **National Trachoma Control Program in 1963** and later on Trachoma control efforts were integrated into India's **National Program for Control of Blindness (NPCB)**.
 - As a result, in 2017, India was declared free from infective Trachoma. However, surveillance continued for trachoma cases in all the districts of India from 2019 onwards till 2024.
 - The **National Trachomatous Trichiasis (TT only) Survey** was also carried out in 200 endemic districts of the country under the National Programme for Control of Blindness & Visual Impairment (NPCBVI) from 2021-24, which was a mandate set by WHO to declare that India has eliminated Trachoma as a public health problem.

India has eliminated trachoma, says WHO

Bindu Shajan Perappadan
NEW DELHI

The World Health Organization (WHO) has now recognised that India has successfully eliminated trachoma, a bacterial infection that affects the eyes, as a public health problem.

In a citation shared by Saima Wazed, Regional Director, WHO South-East Asia, on Tuesday, the UN health body announced that India is the third country in the Southeast Asia Region to reach this public health milestone. "With great pleasure, I congratulate the Government of India on achieving the elimination of trachoma as a public health problem. India's success is due to the strong leadership of its Government and the commitment of ophthalmologists and other cadres of health-care workers. They worked together with partners to ensure effective surveillance, diagnosis and management of active trachoma," Ms. Wazed said.

- To eliminate trachoma as a public health problem, **WHO recommends the SAFE strategy**
- **The SAFE strategy includes:** Surgery to treat the blinding stage (trachomatous trichiasis); Antibiotics to clear the infection, particularly the antibiotic azithromycin; Facial cleanliness and Environmental improvement, particularly improving access to water and sanitation.
- The 17 other countries that have eliminated trachoma are: Benin, Cambodia, China, Gambia, Ghana, Islamic Republic of Iran, Lao People's Democratic Republic, Malawi, Mali, Mexico, Morocco, Myanmar, Nepal, Oman, Saudi Arabia, Togo and Vanuatu.

6. Association of Southeast Asian Nations (ASEAN)

GS 2 (International relations)

- **Why in News:** The Prime Minister is set to strengthen India's strategic ties with Southeast Asia as he heads to Vientiane, Laos, for the 21st ASEAN-India Summit.
- **About Association of Southeast Asian Nations (ASEAN):**
 - It is an **intergovernmental organization of ten Southeast Asian countries.**
 - It was established on 8 August 1967 in Bangkok, Thailand, with the **signing of the ASEAN Declaration (Bangkok Declaration).**
 - It aims to **promote economic and security cooperation** among its ten members.
 - **Members:**
 - **Founding members** of ASEAN: **Indonesia, Malaysia, Philippines, Singapore, and Thailand.**
 - Brunei joined in 1984, Vietnam in 1995, Laos and Myanmar in 1997, and Cambodia in 1999.
 - **Secretariat:** Jakarta, Indonesia.
 - **Fundamental principles** of ASEAN are:
 - **Mutual respect** for the independence, sovereignty, equality, territorial integrity, and national identity of all nations.
 - The right of every state to lead its national existence **free from external interference**, subversion, or coercion.
 - **Non-interference in the internal affairs** of one another.
 - **Settlement of differences** or disputes in a **peaceful manner**.
 - **Renunciation of the threat** or use of force.
 - Effective cooperation among themselves.
 - The **institutional mechanism** of ASEAN includes:
 - **ASEAN Summit:** It meets annually to discuss regional issues and set policy directions.
 - **ASEAN Coordinating Council (ACC):** It oversees the implementation of ASEAN agreements and decisions.
 - **ASEAN Secretariat:** It supports and facilitates ASEAN's activities and initiatives.
 - **ASEAN Regional Forum (ARF):** It is a platform for dialogue and cooperation on political and security issues among ASEAN member countries and their partners.
 - **Decision Making:** It is done through consultation and consensus.

VIENIANE

Myanmar to send representative to ASEAN for first time in three years

Myanmar will send a Foreign Ministry official as its representative to the Association of Southeast Asian Nations (ASEAN) summit this week for the first time in three years, as the junta struggles to quell a civil war. ASEAN had barred Myanmar's junta leaders from its summits in the wake of their February 2021 coup. AP

MCQ Current Affairs
9th Oct, 2024

- 1. Amangarh Tiger Reserve lies in which one of the following states?**
 - a) Uttarakhand
 - b) Uttar Pradesh
 - c) Odisha
 - d) Madhya Pradesh

- 2. Consider the following statements regarding Central Consumer Protection Authority (CCPA):**
 - A. It has powers to take suo-moto actions, recall products, and order reimbursement of the price of goods/services.
 - B. It has powers to pass orders of discontinuation of practices that are unfair and prejudicial to consumers' interests.

Which of the statements given above is/are correct?

- a) A only
- b) B only
- c) A and B
- d) Neither of two

- 3. Consider the following statements regarding Machine Learning (ML):**

- A. It is a branch of Artificial Intelligence (AI) focused on building computer systems that learn from data.
- B. Using historical data as input, these algorithms can make predictions, classify information, and generate new content.

Which of the statements given above is/are correct?

- a) A only
- b) B only
- c) A and B
- d) Neither of two

- 4. Consider the following statements regarding Trachoma:**

- A. It is a bacterial infection that affects the human eyes.
- B. It is a contagious infection and the World Health Organisation declared it as a neglected tropical disease.

Which of the statements given above is/are correct?

- a) A only
- b) B only
- c) A and B
- d) Neither of two

- 5. Consider the following statements regarding Halari donkey:**

- A. It is used by the Bharwad and Rabari pastoralists for carrying luggage during migration.
- B. It is mainly found in the semi-arid region of Rajasthan.

Which of the statements given above is/are correct?

- a) A only
- b) B only
- c) A and B
- d) Neither of two

Answers Current Affairs
9th Oct, 2024

1. b
2. c
3. c
4. c
5. a

